12 research outputs found

    Multilayer Nanomagnet Threshold Logic

    Get PDF
    Nanomagnet logic (NML) uses dipolar magnetic coupling between nanomagnets to efficiently perform nonvolatile logical operations. As the basis logic element, the three-input minority gate is the simplest threshold logic function. Recent work has explored the potential for increased logical expressivity with a nanomagnet threshold logic family that reduces area, delay, and energy costs. However, as such previous work was limited to a single layer of nanomagnets, only negative input weights could be provided, thus limiting circuit expressivity and efficiency. This article therefore, proposes multilayer nanomagnet threshold logic systems that provide both positive and negative weights by leveraging multilayer structures that produce both ferromagnetic and antiferromagnetic dipolar coupling. The availability of both positive and negative weights drastically increases logical expressivity, and the feasibility of the proposed multilayer nanomagnet threshold logic system is demonstrated through micromagnetic simulations. A single seven-input gate is shown to perform more than 86 distinct logic functions, reducing the number of gates and clock cycles required for complex logic circuits by as much as 67%

    High-Speed CMOS-Free Purely Spintronic Asynchronous Recurrent Neural Network

    Full text link
    Neuromorphic computing systems overcome the limitations of traditional von Neumann computing architectures. These computing systems can be further improved upon by using emerging technologies that are more efficient than CMOS for neural computation. Recent research has demonstrated memristors and spintronic devices in various neural network designs boost efficiency and speed. This paper presents a biologically inspired fully spintronic neuron used in a fully spintronic Hopfield RNN. The network is used to solve tasks, and the results are compared against those of current Hopfield neuromorphic architectures which use emerging technologies

    Magnetic domain wall neuron with lateral inhibition

    No full text
    The development of an efficient neuromorphic computing system requires the use of nanodevices that intrinsically emulate the biological behavior of neurons and synapses. While numerous artificial synapses have been shown to store weights in a manner analogous to biological synapses, the challenge of developing an artificial neuron is impeded by the necessity to include leaking, integrating, firing, and lateral inhibition features. In particular, previous proposals for artificial neurons have required the use of external circuits to perform lateral inhibition, thereby decreasing the efficiency of the resulting neuromorphic computing system. This work therefore proposes a leaky integrate-and fire neuron that intrinsically provides lateral inhibition, without requiring any additional circuitry. The proposed neuron is based on the previously proposed domain-wall magnetic tunnel junction devices, which have been proposed as artificial synapses and experimentally demonstrated for nonvolatile logic. Single-neuron micromagnetic simulations are provided that demonstrate the ability of this neuron to implement the required leaking, integrating, and firing. These simulations are then extended to pairs of adjacent neurons to demonstrate, for the first time, lateral inhibition between neighboring artificial neurons. Finally, this intrinsic lateral inhibition is applied to a ten-neuron crossbar structure and trained to identify handwritten digits and shown via direct large-scale micromagnetic simulation for 100 digits to correctly identify the proper signal for 94% of the digits

    Magnetic domain wall neuron with intrinsic leaking and lateral inhibition capability

    No full text
    The challenge of developing an efficient artificial neuron is impeded by the use of external CMOS circuits to perform leaking and lateral inhibition. The proposed leaky integrate-and-fire neuron based on the three terminal magnetic tunnel junction (3T-MTJ) performs integration by pushing its domain wall (DW) with spin-transfer or spin-orbit torque. The leaking capability is achieved by pushing the neurons’ DWs in the direction opposite of integration using a stray field from a hard ferromagnet or a non-uniform energy landscape resulting from shape or anisotropy variation. Firing is performed by the MTJ stack. Finally, analog lateral inhibition is achieved by dipolar field repulsive coupling from each neuron. An integrating neuron thus pushes slower neighboring neurons’ DWs in the direction opposite of integration. Applying this lateral inhibition to a ten-neuron output layer within a neuromorphic crossbar structure enables the identification of handwritten digits with 94% accuracy

    Three Artificial Spintronic Leaky Integrate-and-Fire Neurons

    No full text
    Due to their non-volatility and intrinsic current integration capabilities, spintronic devices that rely on domain wall (DW) motion through a free ferromagnetic track have garnered significant interest in the field of neuromorphic computing. Although a number of such devices have already been proposed, they require the use of external circuitry to implement several important neuronal behaviors. As such, they are likely to result in either a decrease in energy efficiency, an increase in fabrication complexity, or even both. To resolve this issue, we have proposed three individual neurons that are capable of performing these functionalities without the use of any external circuitry. To implement leaking, the first neuron uses a dipolar coupling field, the second uses an anisotropy gradient, and the third uses shape variations of the DW track

    Passive frustrated nanomagnet reservoir computing

    No full text
    Abstract Reservoir computing (RC) has received recent interest because reservoir weights do not need to be trained, enabling extremely low-resource consumption implementations, which could have a transformative impact on edge computing and in-situ learning where resources are severely constrained. Ideally, a natural hardware reservoir should be passive, minimal, expressive, and feasible; to date, proposed hardware reservoirs have had difficulty meeting all of these criteria. We, therefore, propose a reservoir that meets all of these criteria by leveraging the passive interactions of dipole-coupled, frustrated nanomagnets. The frustration significantly increases the number of stable reservoir states, enriching reservoir dynamics, and as such these frustrated nanomagnets fulfill all of the criteria for a natural hardware reservoir. We likewise propose a complete frustrated nanomagnet reservoir computing (NMRC) system with low-power complementary metal-oxide semiconductor (CMOS) circuitry to interface with the reservoir, and initial experimental results demonstrate the reservoir’s feasibility. The reservoir is verified with micromagnetic simulations on three separate tasks demonstrating expressivity. The proposed system is compared with a CMOS echo state network (ESN), demonstrating an overall resource decrease by a factor of over 10,000,000, demonstrating that because NMRC is naturally passive and minimal it has the potential to be extremely resource efficient
    corecore